ImageEn, unit ievision

TIEVisionCascadeClassifierTrainer.mergeSamples

TIEVisionCascadeClassifierTrainer.mergeSamples


Declaration

procedure mergeSamples(sourceVec: PAnsiChar; destVec: PAnsiChar); safecall;


Description

Merges two samples files.
This function is useful if you have generated positive samples using createSamples which produces samples from a single positive and want to merge the generated files before training.

Parameter Description
sourceVec Source samples file
destVec Destination samples file. If exists then its content is merged with "sourceVec". If doesn't exist it will be a copy of "sourceVec"


Example

// create training samples file "samples.vec", containing 1000 samples synthesized from the single file "company_logo_1.png"
cascadeTrainer.createSamples('positive_images\company_logo_1.png', 'negative_images', 'samples.vec', 1000, 40, 40, 0, 10, false, false, 40, 1.1, 1.1, 0.5);
// create training samples file "samples2.vec" containing 1000 samples synthesized from the single file "company_logo_2.png"
cascadeTrainer.createSamples('positive_images\company_logo_2.png', 'negative_images', 'samples2.vec', 1000, 40, 40, 0, 10, false, false, 40, 1.1, 1.1, 0.5);

// merge samples.vec and samples2.vec into samples2.vec
cascadeTrainer.mergeSamples('samples.vec', 'samples2.vec');

// train the cascade classifier with 10 stages using LBP. The output will be "trainingresult\cascade.xml", the you should use in TIEVisionObjectsFinder to find objects.
imagesCount := trunc(cascadeTrainer.getSamplesCount('samples.vec') * 0.85); // trainCascade images count must be less than 85% of the images in "vec" file
cascadeTrainer.trainCascade('trainingresult', 'samples.vec', 'negative_images', imagesCount, 40, 40, 10, ievLBP);


See Also

getSamplesCount